Make your own free website on Tripod.com

THE NEW SCIENCE
The Basic Particle

Establishing the Twelve Parameters of the Universe, in their four Fabrics of Three Parameters each, makes it possible to study from the point of view of the Creator the evolution of the basic building blocks out of which our Universe is constructed. Considering the evolution of one particle only we need go no higher than the first seven parameters, actually holding the seventh constant. The higher Parameters enter the scene only when we want to do something with the particle so established.

The first three Parameters set up a framework in space within which the particle will appear, and the next three will provide the wherewithal with which to make it. We can work with Length, Area and Volume, Tempic, Electric and Magnetic Fields, and all needed relationships between them. Our result will of course not be a true particle, because the higher Parameters will not have been applied; for example, it will not display Form, but will be diffuse from zero to infinity.

In the establishment of the Space Fabric the repeated application of the Quadrature Concept stepped up the available dimensions to three but it also made possible all sorts of quadrature relationships within this framework. Similarly, in the establishment of the Field Fabric three field regions were established with quadrature relationships between them. Furthermore, there exists complete quadrature freedom between the field and space fabric, so that in effect we work in a Six Dimensional Continuum. It is easy to appreciate the large number of possibilities among the many permutations and combinations of spatial dimensions and fields, but the real problem is to sort out the actuality from the possibility. This can be done only by continual cross-reference to observation of Reality; i.e., by asking Mother Nature the right questions. We can be reasonably certain, however, of one thing: there will not be any unused Parameters, and the final result of the studies will involve all six.

Since we have no senses by which we can become directly aware of the various fields we will have to depend on the second hand data made available through our instruments, and here we must be extremely careful to distinguish between the phenomenon itself and the effects of the phenomenon on the instruments. Also, we must be particularly careful in posing our questions to nature that they ask exactly what we want to find out and are not ambiguous.

In developing the twelve Parameters, the Quadrature Concept was applied between Awareness and the next lower Parameter, but it may also be applied between any aspects of any Parameters, or any derivatives of them. In doing this, however, it is most necessary to realize just what is being done, and to understand the relationships which are involved. Furthermore, we must never forget that we are dealing with Reality, and even though certain aspects may become zero, the Reality never vanishes. Conversely, any aspect which extends to infinity is still reality.

Since it was established that reality does extend in all cases from zero to infinity, it follows that if there is to be particularization as made possible by the eleventh Parameter there must be "overlap" among certain aspects. This simply means that in the field fabric it is possible to have fields that exist independently amongst themselves and independently of any "background" which may also exist. In fact, we do not know directly at present how much "unpercipitated Reality" there is in the universe, which will of course appear as a uniform background to the precipitated Reality with which we exist.

Whether or not fields stick together and add up to a single field depends entirely on the antecedents of the field. If the fields are of unit particles they will become coherent for more than half of the reality to be held in common, when the little bits combine to form a big bit. If a field is produced by the simultaneous behavior of lots of particles or other fields, then it will be coherent, so long as more than half its reality exists in common. These are basic principles and form the subject matter of a series of interesting and enlightening experiments, and when understood provides an elegant interpretation of much data being pondered by students of these matters.

The transition between coherent and incoherent fields results from conditions which bring more or less than half of the reality in common, and the 'stability" is purely a function of how close to "half" the system actually is.

In manipulating fields and applying the Quadrature Concept between them, we must understand that what we are really doing is allowing one field to operate on another. The operation of A on b is not necessarily the same as the operation of B on A, although there can be relationships between these two operations. Successive operations will go right around the circle and back to the starting point provided certain conditions are met. These conditions will become apparent later.

There is basically no difference between particles and radiated energy, except one of structure and configuration. Both contain Reality and are made up of fields in space, and are subject to the higher Parameters. We can say that radiated energy is "extended" and that matter is "reentrant", to describe loosely their configurations and structures.

With the foregoing in mind we can now explore what happens when the various fields are operated upon by each other. When an electric field is operated upon by a tempic field, i.e., changed, a magnetic field results. When a magnetic field is operated upon by a tempic field, i.e., changed, an electric field results. A tempic field should result when an electric field operates on a magnetic field, but the trick is to make it do so. Also, we would like to know what happens when a tempic field is operated upon by an electric field or a magnetic field.

A tempic field is largely amorphous and has direction only in relation to its own gradient in space, while both the electric and magnetic fields have vectorial aspects in addition to their scalar aspects. Therefore, we could hardly expect complete symmetry among the operations of these three fields. We can, however, work through an intermediate arrangement whereby we generate the desired field with its interaction already built into it. Whether or not there is a limit to this sort of operation we do not know, but it certainly hasn't been found yet, and it is a valid approach so long as we keep the basic rules constantly in mind.

As an introductory exercise consider the operation of a tempic field on an electric field by the simple expedient of having the electric field move. A magnetic field will be produced and will have a certain specific orientation. The vectorial direction of the magnetic field will be mutually at right angles to the direction of the electric field and its motion. Now, since the magnetic field is a curl function its divergence over the entire field must be zero. In order to bring this about the magnetic field must operate on either or both if the other fields to close the system somehow, somewhere. One such method would be for this operation to increase the tempic field on one side and decrease it on the other so that the motion would close into a loop, which implies the operation of the magnetic field on the electric field to produce a tempic field. If the structure of the three fields is understood, the validity of this operation is at once apparent, which establishes another principle; namely, that when a magnetic field, produced by a moving electric field, is moved longitudinally a tempic field is produced.

More thinking about this exercise discloses the fact that if this system merely closes on itself, the divergence, which is the electric field is eliminated, so that the only way in which the system can be self-sustaining is for it to close toroidally, so that there will be components of all three fields in all directions. That this is in fact the model of the basic particle of the universe in which we exist is amply borne out by experiment, because it displays a tempic field, an electric field, and a magnetic moment. The electric polarity depends on whether the spiral is right- or left-handed.

Inspection of this model discloses the fact that the tempic field will drop off as the inverse distance from the center of the toroid, the electric field will drop off as the inverse square of this distance, and the magnetic field will drop of as the inverse cube. What fields we observe with our instrumentation in the vicinity of such a particle will be the summation of the particle fields, the fields of all other particles, and the unresolved background fields of the fabric itself.

Possibly a clearer understanding of the structure of the basic particle may be had by considering the composition, orientation, and interaction of the entire field structure, considered together as a unit.

Looking at the composite field structure shows us three fields at right angles to each other. There is the tempic with its gradient in one direction, the electric with its divergence in a direction at right angles to it and including it, and the magnetic at right angles to the other two and including both of them. For self-sustaining conditions, the operation f each upon the other, there must be one-for-one relationships between them. Therefore the real movement under stable self-sustaining conditions will be in the vectorial 1,1,1 direction, or exactly midway among the three directions of the component fields.

The skew progression of the fields results in a double closure of the system, which will have both rotation and precession. It is readily apparent that since the tempic field only must have a specified gradient, the other two fields have two possible orientations, which will result in two directions of possible rotation and two directions of possible precession. The electric polarity of the particle will be the resultant of the coherent fields arising from both the rotation and precession, and can have two values of positive and two values of negative. Because of the necessary geometrical conditions imposed by the nature of space itself, the precessional field will be smaller than the rotational field giving particles having two values of positive charge rather close together and two negative equally close together.

The significance of these differences in charges will be discussed later in the chapter on gravity, as well as some very interesting circumstances arising out of the skew condition, particularly at close range.